Student Corner

Agostic interaction and metallacycles

K. Sarath D. Perera

Senior Professor in Chemistry, Department of Chemistry, The Open University of Sri Lanka

Coordinatively unsaturated metal centers may interact with a C-H bond of a **coordinated ligand** and then undergo C-H bond activation or fission to form **metallacycles**.

Agostic interaction

An interaction that occurs between an unsaturated metal center and a C-H bond of a group attached to that metal center is called an **agostic interaction**. These interactions are denoted by a **half-headed arrow** (—) as given in following examples.

Figure 1: [TiCl₃(Me)(dmpe)] (1) (agostic methyl); [TiCl₃(Et)(dmpe)] (2) (agostic ethyl); [RuCl₂(PPh₃)₃] (3) (agostic **phenyl**)

dmpe = bis(dimethylphosphino) ethane

Hydride abstraction

Sometimes, unsaturated metal centers may abstract a hydrogen from a coordinated organic group forming a metal hydride. For example, the $M-CH_2CH_3$ group can form a M-H and a coordinated ethene molecule due to **\beta-hydride abstraction** and subsequent **elimination** of ethene as shown below.

Decomposition of alkyl-complexes is mainly occurred *via* β -hydride abstraction followed by elimination of an

organic molecule (*e.g.*, olefin). Thus, metal complexes which do not have a β -hydrogen (*e.g.*, C=CR, CH₂Ph) are relatively stable.

Metal-methyl (M-CH₃) complexes may undergo α -hydride abstraction to form carbene or alkylidene (M=CH₂) complexes. The complex [Cp₂MoH(=CH₂)]⁺ (4) is formed *via* α -hydride abstraction by Mo of [Cp₂MoMe]⁺; Cp = cyclopentadienyl.

Cyclometallation

The formation of a **metallacycle** with a **new** M-C bond *via* a C-X (X = H, halogen) bond fission of a coordinated ligand by the metal center is known as **cyclometallation**. This reaction can be considered as an **intramolecular reaction**. This cleavage of a C-H bond is also referred to as C-H **bond activation**. An alkyl group of a coordinatively unsaturated metal-alkyl complex could form weak **agostic** interaction before cleaving the C-H bond.

The possible path ways for C-H bond activation to form **metallacycles** are depicted in Scheme 1. Z is the coordinated atom (*e.g.*, C, N, P, O, S *etc.*).

Scheme 1: Possible reaction paths for C-H bond activation of a coordinated ligand by a metal. (a) Oxidative addition of a C-H bond; (b) C-H bond activation with a loss of H⁺ ion; (c) C-H bond activation followed by a loss of HX molecule.

Aliphatic (*sp*³-hybridised) C-H bonds are quite unreactive towards chemical reagents. However, these bonds can be activated (or cleaved) by metal centers when they are brought closer to a metal center by means of prior coordination through a donor atom present in the ligand.

The C-H bond activation of a **methyl** group of a coordinated PMe_3 of $[Fe(PMe_3)_4]$ (5) gives a 3-membered metallacycle (6) as shown below.

Chelate assisted activation of **aryl** C-H bonds (carbon is sp^2 -hybridised) forms stable metallacycles. In azobenzene, PhN=NPh (7), the *ortho*-C-H bond of the Ph group is forced to interact with the Pd center to form a metallacycle. Thus, this process is referred to as **orthometallation**.

The reaction between (7) and $PdCl_2$ gives the cyclometallated chloride bridged Pd(II) dimer $[Pd(C_6H_4N=NPh)(\mu-Cl)]_2$ (8). It is the first example of cyclometallation reaction reported by A. C. Cope in 1965.

Upon heating, one of the *ortho*-C-H bond of PPh_3 ligand of the complex $[IrCl(PPh_3)_3]$ (9) oxidatively adds to the Ir(I) center giving the complex (10) or its isomers with a 4-membered ring.

Oxidative Coupling (O.C.)

Coupling of two alkenes (*e.g.*, $CH_2=CH_2$) at a metal center gives a 5-membered **metallacycle** $[LnM(CH_2)_4]$ (11) as shown below.

During this process, the oxidation state of the metal has increased by two units, thus it is an oxidation reaction. Two olefins are combined at the metal; thus, it is a coupling reaction. The reverse process is known as reductive decoupling (R.D.) or reductive cleavage and it is not very commonly observed.

Problems

- Orthometallation of [RhMe(PPh₃)₃] gives the complex (A) and a methane molecule (*via* reductive elimination). Draw the structure of (A).
- Dimethyl hydrazone, PhC(=NNMe₂)Me, undergoes orthometallation with Na₂PdCl₄ to give a chloride bridged Pd(II) dimer (B) containing a 5 membered ring. Draw the structure of (B).
- [(η⁵-C₅Me₅)RhH(Ph){PMe₂(CH₂Ph)}] undergoes orthometallation to give the complex (C) and a benzene molecule. Draw the structure of (C).
- 4. One mole of [Fe(CO)₅] reacts with two moles of tetrafluoroethene (CF₂=CF₂) to give the 16e Fe(II) metallacycle (D). (D) takes up a CO molecule to form the 18e complex (E). Draw the structures of (D) and (E).